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For a given box spline B and a compactly supported distribution Jl, we examine
in this note the convolution B * Jl and the space H(B * Jl) of all exponential-polyno
mials spanned by its integer translates. The main result here provides a necessary
and sufficient condition for the equality H(B * Jl) = H(B). This condition is given in
terms of the distribution of the zeros of the Fourier-Laplace transform of B * Jl and
allows us to reduce the above equality to much simpler settings. The importance of
this result is for the determination of the approximation properties of the space
spanned by the integer translates of B * JI. Typical examples are discussed. CO 1991

Academic Press, Inc.

1. INTRODUCTION

The basic model in multivariate splines on a uniform mesh (= multi
variate splines on a regular grid) consists of a compactly supported func
tion r/J defined on IRs and the space S(r/J) spanned by its integer translates.
Two of the most important criteria for a favourable choice of r/J are the
linear independence of the integer translates of ¢J, and the local approxima
tion properties of the space H(¢J) := the set of all exponential-polynomials
that lie in S(¢J) (here and elsewhere, an exponential-polynomial is a linear
combination of finitely many products of exponentials with polynomials).
The significance of this last space is due to the fact that in most circumstan
ces the local approximation power of H(¢J) can be shown, with the aid of
the so-called quasi-interpolation schemes, to provide a lower bound on the
approximation power corresponding to S(r/J) and appropriate scaled ver
sions of it. However, these two basic properties (the linear independence of
the integer translates and the good local approximation power of the space
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H(cP)) are highly competitive properties, a fact which will be illustrated
later on.

In many of the practical examples of cP, the compactly supported func
tion is constructed by convolving together several functions or distribu
tions. A tentative justification for such an approach would emphasize the
fact that the functions of H( cP) are determined by the distribution of the
zeros of the Fourier-Laplace transform of cP together with the multiplicities
of these zeros; such a property can be treated more efficiently when cP is
expressed as a convolution of simple factors.

Exponential box (EB- )splines, introduced in [Rl], generalize the well
known polynomial box splines [BD, BH1 ] and provide a wide selection
of choices for the function cP. To introduce a typical EB-spline, let F be a
finite multiset (to be referred later as a defining set) withcardil1ality # r
consisting of elements of the form

(1.1 )

where x y E 1: S \O and Ay E C. The EB-spline corresponding to F, B(F), is
defined via its Fourier transform by

B(Flx):= n B(Ylx):= n (f1 e('<y-iXy>X)t dt). (1.2)
yET YET 0

Note that indeed the exponential box spline can be expressed as a
convolution of lower order ones. In fact, if r =F 1 U F l , it follows from
(1.2) that

(1.3)

In case

(1.4 )

B(F) gives rise to a compactly supported function B(FI'); otherwise the
EB-spline is merely a distribution (actually a measure) supported in <F>.
For more information about EB-splines we refer the reader to
[Rl, R2, BR, DM, DR].

Only a few other examples of a function cP can be found in the literature,
and most of these examples consist of bivariate piecewise-polynomials. In
fact some of these functions are obtained by convolving a (polynomial) box
spline with a certain (and simple) compactly supported function (cf., e.g.,
[BH2, CHJ). Stimulated by the latter functions, we became interested in
the properties of a function lj; obtained as a convolution of an EB-spline
and an arbitrary compactly supported distribution J1.. For that model, the
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question of linear independence of the integer translates has been discussed
thoroughly in [CR]. In this note we compare H(ljJ) (with ljJ as above) with
H(B(r)). Our main result here provides a necessary and sufficient condi
tion for the equality

H(ljJ ) = H(B(r)). (1.5 )

The statement as well as the proof of the main result is presented in
Section 3. In Section 2 we collect the notations and preliminaries needed
for this proof. Finally, we discuss in Section 4 two examples which
demonstrate the efficiency of the main result.

This paper together with [CR] allows us to determine clear criteria for
a "good" choice of fl. The various applications of these results will be
studied in a subsequent paper of C. K. Chui and the author.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper we use II for the space of all s-dimensional poly
nomials, eo for the exponential exp(W·), and ~ for the Fourier-Laplace
transform of the compactly supported distribution <P, i.e., the analytic
continuation of the Fourier transform of <p. EX, x E ~s, stands for the
translation operation

and the terminology difference operator is used exclusively for finite linear
combinations of integral translations.

Given a subset K of the defining set r, we find it convenient to refer to
linear properties of {xy}y E K in terms of K. Thus, we say that K is linearly
independent and mean that the vectors {xy}Y E K are linearly independent.
Also we use

(K)

for the real span of {xy}Y E K, and

Kl-

for the complex set
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For XE IRS\O, let D x be the directional derivative in the x-direction.
Given K c r, we set

DK := TI DY := TI (D x ) - Ay ).

yEK yEK

The differential operators of the form D K play an important role in box
spline theory; particularly we have (cf. [Rl, Theorem 2.2J)

(2.1) PROPOSITION. For K c r

where VK is the difference operator

The above differential operators are also important in the analysis of
H(B(r)). To discuss this part, we first introduce the following collection of
subsets of r,

1K(r) := {K c rl <r\K) # IRS},

and associate the defining set r with the space

It is known (cf. Section 4 of [BR]) that Yf(r) is an exponential-polyno
mial space (namely, is spanned by products of exponentials with polyno
mials). The significance of Yf (r) in our context lies in the fact that B(r)
is a piecewise-Yf(r) function, (in particular H(B(r)) c Yf(r)), and that
generically H(B(r)) = Yf(r). More precisely, we have (cf., e.g., [BR,
Theorem 6.2]):

(2.2) PROPOSITION. If, for some eE res, B(TJ e) # 0, then

eell (1 Yf(r) = eell (1 H(B(r)).

We now discuss the Fourier analysis elements which are needed in the
sequel. First note that (1.2) implies that

B(YIx) = °-= Ay- ix . x yE 2niZ \0. (2.3 )

The next result (which, essentially, is known [B]) provides, for an
arbitrary compactly supported distribution, a characterization of H(¢J) in
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terms of the distribution of the zeros of the Fourier transform of ¢J. We use
the notation ¢J *' f for the semi-discrete convolution, i.e.,

¢J *' f:= L f(IX) ¢J(- - IX),
iXE 7L S

wherefis defined (at least) on lL s
•

(2.4 )

(2.5) THEOREM. Let ¢J be a compactly supported distribution and 8 E;' C.
If, for some p E II, eeP E H(¢J), then

(EfJp )( -iD) ~(() + 2na) = 0, Va E lL$\O, f3 ElLS. (2.6)

Moreover, if, in addition, ~(8) i= 0, then the converse implication holds as
well.

Proof We first note that Theorem 2.7 of [BoR2] shows that condi
tion (2.6) is equivalent to the condition

(2.7)

Further, if we assume that ~(8) i= 0, then it is known that

(Proposition 2.2 of [RS] proves the case 8 = 0, to which the general case
is a straightforward extension), and the equivalence between (2.6) and the
condition eeP E H(¢J) thus follows.

It remains to show that the assumption eeP E H( ¢J) implies (2.7), without
any reliance on the condition ~(8)i=0: assuming eePEH(¢J), we obtain
from Corollary 5.5 of [BoRl] that eeP=¢J *' eer, for some rElI, hence,
since ¢J *' commutes with integer translations, we even have V(eeP) =
¢J *' V(ee r ), for every difference operator V. On the other hand, invoking
the implication (c)=>(b) of Theorem 2.7 of [BoR2], we see that also
eeP = ¢J * ee r, and consequently eeP may be written in the form V(eer) for
a suitably chosen V, since any convolution operator on a translation
invariant finite-dimensional subspace of eell can be represented as a
difference operator. Therefore, for any such V, V(eeP)=¢J *' eeP, and thus
(2.7) (hence also (2.6)) holds. I

The special case deg P =°in Theorem 2.5 will be used frequently in the
sequel, hence is stated separately:



EXPONENTIAL-POLYNOMIALS IN LINEAR SPAN

(2.8) COROLLARY. Let </J be a compactly supported distribution and
8 E CS. If ee E H(</J), then

$(8 +2na) = 0,

and the converse is true if $(8) i= 0.

If (2.9) holds, we obtain

(2.9)

which implies [R3] that the condition

(2.10)

$(8 +2na) = 0,

is sufficient for the linear dependence of the integer translates of </J. A com~

parison of this last condition with (2.9) demonstrates the competitioI1
between the properties of a rich H(</J) on the one hand, and linear inde
pendence of the integer translates of </J on the other hand.

3. THE MAIN RESULT

Throughout this section Jl is a fixed compactly supported distribution
and B(F) denotes an exponential box spline whose defining set r satisfies

Given a subset Mer we set

<r) [W.

t/JM :=B(M) * Jl.

(3.1 )

The following theorem is the key for the desired necessary and sufficient
condition for the equality

H(B(F» = H(l/J r)' (3.3 )

(3.4) THEOREM. Let 8 be in CS, and assume that t/ir(8) i= 0. Then the
following conditions are equivalent:

(a) For some p E II,

(3.5 )

(b) There exists some linearly independent subset Mer of cardinality
<s such that

(3.6)
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(c) There exists some linearly independent subset M c r of cardinality
<s such that

and

'iyEM, (3.7)

J1(8 + 2nIX) = 0, (3.8)

Proof of Theorem 3.4. We start the proof by showing that (b) ¢> (c).
This equivalence is the content of the following two claims.

CLAIM L Let M be any subset of r that satisfies (3.7) and (3.8). Then
(3.6) holds with respect to this M.

Proof Since we assume ~ r(8) i' 0, it follows that ~M(8) i'° (since
lj;r = lj;M * B(r\M)). Therefore, in view of Corollary 2.8, the claim will be
proved as soon as we show that

~M(8 + 2nIX) = B(MI 8 + 2nIX) J1(8 + 2nIX) = 0, 'iIX E ZS\O. (3.9)

For IXEZSnM-l\O, (3.9) is guaranteed by (3.8). Otherwise, there exists
y E M such that IX' x yi' 0; this means, in view of (3.7) (and since x yE ZS),
that

and thus, by (2.3), B(y I8 + 2nIX) = 0. We conclude that

B(MI8 + 2nIX) = 0, (3.11)

and hence (3.9) is verified and the claim is thus proved.

CLAIM 2. Assume that for some M c r, e IJ E H( lj;M), and that M is mini
mal with respect to this property. Then M is necessarily linearly independent
and satisfies (3.7), (3.8).

Proof Since, by assumption, ~M(8) i'0, Corollary 2.8 allows us to con
clude that (3.9) is equivalent to the assumption that elJ E H(lj;M)' Therefore,
the minimality of Mimplies the existence of {IXy}YEMCZS\O such that

YEM. (3.12)

(Indeed, since we assume elJ E H(lj; M), then, by Corollary 2.8, ~M vanishes
on (8 + 2nZS )\0, and if, for some y E M, Bv vanishes nowhere on
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(e + 2nZ S )\0, then also ~ .14, would vanish on (() +2n£')\0, hence
(Corollary 2.8) eo E H(ljJ ,14), contradicting thereby the minimality of M.)
From (3.12) and (2.3) we obtain that

in particular

i. y - i(O + 2nrx). x). E 2niJ', Va E r, i' E M;

V('EM.

(3.13 )

(3.14 )

Utilizing the fact that the assumption ~ [(fJ) #- 0 implies B(~' I0) #- 0 for all
.; E T, we may combine (3.14) together with (2.3) to conclude

(3.15 )

that is, (3.7) holds.
Now, let :x E M.l \0; then (3.15) shows that

i.). - i(e+2na) . x" = 0,

which yields (in view of (2.3)) that for such an rx

B(MI 0 + 2nrx) #-0,

and thus (3.9) forces

j1( e+ 2na) = 0,

which proves (3.8).
To complete the proof of the claim, it remains to show that M is

necessarily linearly independent. Let M, e M be a linearly independent set
that spans <M). Since (3.7) and (3.8) hold with respect to M, they hold
with respect to M b and therefore Claim 1 implies that (3.6) is valid with
M j replacing M. The minimality of M then ensures that M, = M, so Mis
indeed linearly independent and Claim 2 is thus established.

We now prove the implication (a) ~ (b). For that we need the following
fact of independent interest:

(3.16) PROPOSITION. In the notations of the theorem, if eopEH(ljJr)\
.1f(F), then (\1.'ithout requirin~ the assumption ~ l(fi) #- 0) there exists
MeT, such that eoEH(ljJM)' while <M)#-[R'.

Proof Since eo p E H( ljJ I)' there exists a sequence c such that ljJ [ *' C=

eo p. On the other hand, since eo p ¢ J'f(F), there exists some K E IK(F) such
that DK(e0 p) #- O. Since DK(I'0 p) E eoIl, we obtain, by Proposition 2.1,

eoJI\03 DK(eop) = DK(B(F) * P *' c) = B(T\K) * P *' 'lAC. (3.17)
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This shows that, with M:=I'\K,H(ljJM)neoIl#O. Further, the space
H(ljJM)neoil is invariant under integer translates, hence [B] invariant
under any translates. Since every non-trivial translation-invariant subspace
of eell must contain ee, we conclude that eo E H(ljJ .'.1)' while by the defini
tion of 1K(r), <M> # IR'.

The implication (a) ~ (b) of the theorem readily follows from
Proposition 3.16, since we need only show that M in the proposition can
be replaced by a linearly independent subset of it, which is simple: if M 1

is a minimal subset of M with respect to the property eo E H(ljJ .'.1), then, by
Claim 2, M I is necessarily linearly independent.

It remains to prove that (c) implies (a). Here, let M be the sct appearing
in (c) and let ~ be any non-trivial vector in M '. Define

p(x):= (~·x)\

where k is the least non-negative integer satisfying

f:=eop¢£(F)·

(3.18 )

We contend that.r satisfies (a), i.e.,j E H(ljJ r).
Let us show that indeed f E H(ljJ r). Since we assume ~ r((n # 0, applica

tion of Theorem 2.5 yields that this will be established as soon as we prove
that

(DY ~ r(tJ + bw) = 0, V:x. E £"\0, j = 0, ..., k. (3.19)

In the verification of (3.19) we consider two types of points:

(l) :x. E£,'\M .: for such an :x. choose "'/ E M such that Cl· x, # 0. By
appealing to (3.7) we obtain

io y- i(O + 2rc:x.)· x yE 2rci£' \0,

hence the Fourier transform of B(y) vanishes at () + 2rcCl. On the other
hand, by (1.2), this transform is constant along any direction orthogonal to
Xy' Since y EM and ~ E Mi., it follows that x, .1 ~. We conclude that B(y),
and hence ~ r, vanishes on the line

{(B + 2rc:x. + to} (e:<. (3.20)

Now it is clear that for such an (1., (3.19) holds (even without any restric
tion on j).

(2) Let :x.E£"nMJ.\O. Since ~r((n#O, then also B(I'I()) #0, and
therefore, by Proposition 2.2, the assumption eo(x)(~ 'X)k ·1 E ,1't(r)
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implies that ee(x)(~,X)k 1 E H(B(T)). Consequently, an application of
Theorem 2.5 yields that

(Dd J s(rl e+ 2na) = 0, Va E d'S \0, j = 0, ... , k - 1,

which means that B(n e+ 2na + ·0 has a k-fold zero at O. Since by (3.8),
,a(e + 2na) = °as well, we conclude that iJ r(e + 2na + .~) has a (k + 1)
fold zero at 0, and (3.19) thus holds for this case as well.

The implication (c) = (a) is now established, and the proof of the
theorem therefore comes to its end. I

The equivalence of (a) and (b) in the above theorem leads to the
following result:

(3.21) COROLLARY. In the notations of the previous theorem, if we
assume that

H(rjJr) = I eeQg,
BE e c: cs

and that, for every M c rand e E CS,

Qe cIl, (3.22)

then the following conditions are equivalent:

(3.23 )

(a) H(rjJ r)\H(B(T)) =I 0.
(b) For some linearly independent set M c r of cardinality < s,

H(rjJ M) contains an exponential eg.

Proof Assume (a). By (3.22), there exists an exponential-polynomial
eePEH(r/Jr)\H(B(T)). As previously noted, this necessarily implies
that eoEH(r/JA which yields, in view of (3.23), that iJr(e) =1O, hence
also S(rIB) =10, and thus, by Proposition 2.2, eop¢;Je(T) (since
eop¢;H(B(T))). We have thus shown that eePEH(rjJr)\Je(T), and (b)
here is obtained from the implication (a) = (b) in Theorem 3.4.

Now, assume (b). By (3.23), since eg E H(rjJ M), iJr(e) =I 0, and we may
invoke the implication (b) = (a) of Theorem 3.4 to conclude that for some
pEH, egpEH(rjJr)\Je(T), a fortiori egpEH(rjJr)\H(B(T)). I

We note that condition (3.22) in the last corollary is a mild one. It is
satisfied, e.g., whenever, for the e there, 2nd" n (e - e) = 0, as follows
from Lemma 2.4 of [BoR2].

Simpler conditions are obtained if we assume that B(T) is a polynomial
box spline (i.e., all A/S are zero), and if, subsequently, we restrict our
attention to the polynomials in H(B(r) * fl). In such a case (as verifie~

640/66/3-4
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from (1.2)), B(riO) =f 0, hence the case e=°in Theorem 3.4 implies the
following.

(3.24) COROLLARY. Assume that B(r) is a polynomial box spline, and fl
is a compactly supported distribution that satisfies ,u(0) =f 0. Then
H(B(r) * fl)\H(B(r») contains polynomials, if and only if 1E H(B(M) * fl)
for some linearly independent M of cardinality < s.

4. EXAMPLES

We discuss two bivariate examples, which illustrate the results of the
previous section.

(4.1) EXAMPLE. Let B(r) be a bivariate three-directional exponential
box spline, that is,

XyE {(I, 0), (0, 1), (1, I)}, Vy.

Let fl E L oo (1R 2
) be supported in the triangle with vertices at (0,0), (1,0),

(1, 1). Define, as before, t/J := B(r) * fl. (Certain smooth piecewise-polyno
mials of minimal support are obtained in this way; cf. [CH] and the
references therein.) We contend that

H(t/J) c .Yf(r), (4.2)

which, roughly speaking, means that the approximation properties of B(r)
are not improved in the smoothing process B(r) 1---* B(r) * fl.

To prove (4.2), we make use of Proposition 3.16. Assuming (4.2) is not
valid (for the sake of contradiction), this proposition implies the existence
of eE C2 and a subset Mer, with (M) =f 1R2

, such that elJ E H(B(M) * fl),
and hence, for some sequence c, fl * (B(M) *' c) = elJ' This is clearly
impossible if M = 0, since the supports of the integer translates of fl do not
fill all of 1R2

; hence we must have (M) = IR, a case in which B(M) is a
measure supported on (M), which can be identified (when identifying
(M) with IR) with a suitable univariate B-spline. This shows that
B(M) *' c is a measure supported on the union of lines

U rx+ (M),
IX E 7L2

(4.3 )

and which can be identified on each line with some locally bounded func
tion. Furthermore, by the assumptions on fl and r, one can choose
{Xh h > 0 C 1R2 such that the intersection of x h + supp fl with the set in (4.3)
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is a segment of length O(h). It follows that f-l * (B(M) *' c) is either discon
tinuous or has some zeros, hence cannot be the exponential eo. Thus, we
obtained the desired contradiction, and (4.2) follows.

(4.4) EXAMPLE. Here, we assume that B(r) is a bivariate polynomial
box spline, and f-l is the characteristic function of some domain Q. In such
a case, H(B(r)) = £(r) c II. Suppose that we want to choose f-l such that
H(B(r) * f-l)\H(B(r)) contains polynomials. How to do that? To answer
this question we invoke Corollary 3.24 (since f-l is the characteristic
function of some domain, fl(O) =1= 0, so that this corollary is applicable) to
conclude that the condition needed is that, for some y E r, 1E H(B(y) * J1),
or equivalently [B],

B(y) * f-l *' 1Ell.

(As a matter of fact, M might be of cardinality either 1 or 0; yet the latter
case is the trivial situation when 1 E H(f-l).) Since B(y) is a measure whose
mass is uniformly distributed on the segment {txy} 0 <C; t <C; 1 both of whose
endpoints are integral, it follows that B( y) *1 1 is a measure whose mass is
uniformly distributed on the lines

(4.5)

Thus, f-l * (B(y) *' l)(x) is the sum of the lengths of the intersection
segments of the lines in (4.5) with the x-translate of J1. Consequently, in
order for H(B(r) * f-l) to contain polynomials not already in H(B(r)) it is
necessary and sufficient that, in one of the directions {x y}Y E r, the
lR-Lebesgue measure of the sets

{IX + txy+ x: IX E 7L2 , t E lR},

be independent of x a.e. (lR 2
).
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